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I. FINITE TEMPERATURE BCS

A. Meanwhile, Back at the Hamiltonian

Last time, we found that with the substitution of the transformed operators, the model Hamiltonian
becomes,
HM−µNop =

∑
k (nice terms involving diagonal operators) + (undesired cross terms)

(
2ξkukvk +∆∗

kv
2
k −∆ku

2
k

)
.

We can eliminate all of the ugly terms in the transformed Hamiltonian by making a second constraint
on the u’s and v’s, namely to make the bracket term in the model Hamiltonian equal to zero. That leads
to a quadratic equation for the quantity ∆∗

kvk/uk whose solution yields ∆∗
kvk/uk = Ek − ξk, which is

real. Here again we have Ek =
√
∆2

k + ξ2. If we take the convention that uk is real (as in the previous
calculation), then it must be that vk and ∆ have the same phase. This phase factor is the same for all
k and endows the energy gap with the macroscopic quantum phase factor in the superconducting state.
With the two constraints on the u’s and v’s, we can now solve for them in terms of known quantities,
and the result is

v2k = 1
2

[
1− ϵk−µ√

∆2+(ϵk−µ)2

]
, and

u2
k = 1− v2k = 1

2

[
1 + ϵk−µ√

∆2+(ϵk−µ)2

]
,

exactly as before in the zero temperature variational calculation!

The resulting diagonalized Hamiltonian is,
HM − µNop =

∑
k (ξk − Ek +∆kb

∗
k) +

∑
k Ek

(
γ+
k0γk0 + γ+

k1γk1
)
.

The first sum reproduces the ground state BCS energy. The second sum represents excitations out of
the ground state. It counts excitations of energy Ek through the γ+γ number operators.
These excitations are gapped by ∆, and as such are very rarely created at low temperatures when
kBT << ∆. Note that there is a gap in the energy spectrum of these excitations, but no gap in the
momentum. The excitations are called Bogoliubons or quasi-particles.

B. Finite-Temperature Self-Consistent Gap Equation

Now enforce the self-consistency condition on the bk operators through the energy gap, ∆k ≡
−
∑

l Vk,lbl with bl = ⟨c−l,↓cl,↑⟩. Expressing the c-operators in terms of the γ operators eventually
yields,
∆k = −

∑
l Vk,lu

∗
l vl

〈
1− γ+

l0γl0 − γ+
l1γl1

〉
.

By inspection it seems clear that the γ+γ number operators now serve to decrease the expectation value
on the right-hand side of the equation, resulting in a diminished energy gap as more and more excitations
are created out of the BCS ground state.

We can set up a finite-temperature version of the self-consistent gap equation as follows. First,
propose that the excitations are created at finite temperature by an amount dictated by Fermi-Dirac
statistics since we know that the γ operators are Fermionic in nature. (Here we see the seeds of the
two-fluid model of superconducting electrons described by a ground state wavefunction co-existing with
a “normal fluid”.) Namely the number operator expectation values are replace by the Fermi function
for the quasiparticle excitation at energy El: f(El) =

1
eβEl+1

with β = 1/kBT . This results in a factor

of 1− 2f(El) = tanh(βEl/2).
The u∗

l vl factor can be written as ∆l

2El
. The resulting finite-temperature self-consistent gap equation is,

∆k = −
∑

l Vk,l
∆l

2El
tanh(βEl/2).

To proceed, once again put in the Cooper pairing potential as,

Vk,l =

{
−V |ξk| , |ξl| ⩽ ℏωc

0 |ξk| and/or |ξl| > ℏωc

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Quasiparticle Excitation Spectrum.pdf
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with V a positive number. Again it leads to an isotropic gap, which can be canceled in the numerator,
yielding

1/V = + 1
2

∑Restricted
l

tanh(βEl/2)
El

Converting from a sum on l to an integral on energy brings in the density of states D(E) (which we
assume is approximately constant over the range of the energy integral) and allows us to write:

1

D(EF )V
=

∫ ℏωc

0

tanh

[√
ξ2+∆(T )2

2kBT

]
√

ξ2 +∆(T )2
dξ (1)

This is the finite-temperature self-consistent gap equation.
At zero temperature the argument of the tanh is infinity, yielding 1 in the numerator, and the zero-
temperature gap result is recovered:
∆(T = 0) = ℏωc

sinh(1/D(EF )V ) .

Now examine the limit as T → Tc. We expect the gap to decrease continuously to zero, it’s value
in the normal state. However, a large fraction of the electrons in the metal will be quasi-particles, and
their interactions are not included in the Hamiltonian. Nevertheless we proceed. At Tc we expect,

1
D(EF )V =

∫ ℏωc

0

tanh
[

ξ
2kBTc

]
ξ dξ This integral can be done with some effort and yields an expression for Tc,

kBTc ≈ 1.13ℏωce
−1/D(EF )V , a result similar to that for the zero-temperature gap. In fact BCS predicts

that in the weak coupling limit (D(EF )V << 1) there is a universal result for the “reduced gap”,
∆(0)/kBTc = 2/1.13 = 1.76. Data on elemental superconductors show values in this ballpark, or higher.
The oft-quoted value 2∆(0)/kBTc = 3.528 essentially defines the “weak coupling BCS limit” for many
researchers.

By the way, the result that Tc ∼ ωc motivated the study of the “isotope effect” on Tc discussed earlier
in the course (i.e. TcM

α = constant, with α = 0.5, where M is the average ionic mass in the metal).
Another important ramification of this result is the generic fact that the zero-temperature gap is expected
to scale with the Tc of the superconductor: ∆(0) ∝ Tc.
Finally, it should be noted that a d-wave superconductor has a weak-coupling approximation value of

2∆(0)/kBTc = 4.28, see the class web site, where ∆(0) is the maximum of the k⃗-dependent d-wave gap
on the Fermi surface.

C. Temperature Dependent Gap

Numerical solution of the finite-temperature self-consistent gap equation (Eq. 1) for ∆(T ) is in very
good agreement with data obtained by tunneling spectroscopy on weak coupled elemental superconduc-
tors, as shown in the Supplementary Material on the class web site.
The gap has two interesting asymptotic temperature dependencies:

1. Low Temperatures

For T < Tc/3 one has ∆(T ) = ∆(0)
(
1− e−∆(0)/kBT

)
. In other words the gap remains very close to it’s

zero temperature value, dropping only slightly by an activated amount. This is an important “smoking
gun” signature of a fully-gapped superconductor. There exist superconductors with point or line nodes
of the energy gap on the Fermi surface, and these superconductors have properties that are power-law
in temperature at the lowest temperatures. Example properties include the magnetic penetration depth
and thermal conductivity. These ‘nodal’ superconductors typically have Cooper pairs in higher orbital
angular momentum states, such as ℓ = 1 (p-wave) and ℓ = 2 (d-wave).

2. Near Tc

For T → Tc one has ∆(T ) ≈ 1.74 ∆(0)
(
1− T

Tc

)1/2

. The superconducting gap goes to zero continu-

ously at Tc, characteristic of a second-order phase transition. This exponent of 1/2 is typical of ‘mean

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Lecture11VG.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/PhysRevB.53.3598.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Lecture11VG.pdf
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field’ critical behavior for the order parameter in 3D, and is the same as the mean-field treatment of the
ferromagnetic-paramagnetic phase transition. Note that the slope of ∆(T ) is infinite at Tc.

D. Thermodynamic Quantities

This simple model Hamiltonian also allows study of the finite-temperature thermodynamic properties
of an ideal BCS superconductor. One can calculate the electronic entropy, heat capacity, and free energy
vs. temperature. We ignore the lattice contributions.

The BCS ground state is a ’superfluid’ in the sense that it cannot carry entropy. The electronic
entropy comes from the quasiparticles excited out of the ground state. The electronic entropy for any
Fermi gas is given by,
Se = −2kB

∑
k [(1− f(Ek)) ln(1− f(Ek)) + f(Ek) ln(f(Ek))].

For a normal metal this becomes,
Sen = γT , where γ ≡ 2

3π
2D(EF )k

2
B , and the entropy is just linear in temperature. For a superconductor

the situation changes because of the gap in the excitation spectrum, leading to fewer quasiparticle
excitations and lower entropy than the normal state at all temperatures below Tc. In fact the electronic
entropy is exponentially small for T < Tc/3 due to the limited number of quasiparticle excitations out
of the ground state.

The electronic heat capacity is given by Ce = T dSe

dT . Once again this is a linear function of tempera-
ture for a normal metal, Cen = γT . For a superconductor the electronic heat capacity is exponentially
small at low temperatures T < Tc/3, and enhanced above the normal state value just below Tc. The
superconducting electronic specific heat can be written as,

Ces = 2βkB
∑

k −
∂f(Ek)
∂Ek

[
E2

k + 1
2β

d∆2

dβ

]
.

The first term in square brackets is common to all Fermi gases. The second term is unique to super-
conductors and arises from the re-arrangement of states associated with the temperature-dependent
gap. At Tc this term gives rise to a discontinuous jump in electronic heat capacity because the singular
slope of ∆(T ) there. BCS theory predicts a “universal specific heat jump” at Tc in the weak-coupling
approximation, given by,
∆C
Cen

= D(EF )
(
−d∆2

dT

)
/Cen

Using the weak-coupling expression for the gap near Tc, and the universal reduced gap value, one finds,
∆C
Cen

= 1.43.

This is found to be in very good agreement with measured results (see the Thermodynamics of Super-
conductors slides) on weak-coupled elemental BCS superconductors. The discontinuity of the electronic
heat capacity at Tc is a direct manifestation of the opening of a gap in the excitation spectrum, and
serves as definitive evidence for superconductivity.

Measurement of the universal specific heat jump is considered a hallmark of “bulk” superconductivity.
In higher-Tc superconductors it becomes a challenge to measure ∆C/Cen because of very large lattice
contributions (which must be removed to compare to BCS predictions for the electronic heat capacity)
and the difficulty in determining the normal state electronic heat capacity (because the critical magnetic
fields required to destroy superconductivity are often beyond our ability to generate).

The free energy of the superconductor is lower than that of the normal metal state as shown on
the class web site Supplemental Material. This difference in free energy is known as the ’condensation
energy.’ This free energy difference, and it’s variation in space and time inside the superconductor, will
be the focus of Ginzburg-Landau theory.

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Phys%20798C%20S22%20Thermodynamics%20of%20Superconductors.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Phys%20798C%20S22%20Thermodynamics%20of%20Superconductors.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Phys%20798C%20S22%20Thermodynamics%20of%20Superconductors.pdf
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